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Abstract. The light cone QCD sum rules are derived for the K∗Kπ coupling gK∗Kπ and the ρππ coupling
gρππ. The contribution from the excited states and the continuum is subtracted cleanly through the double
Borel transform with respect to the two external momenta, p2

1, p2
2 = (p−q)2. Our result gK∗Kπ = (8.7±0.5)

and gρππ = (11.5± 0.8) is in good agreement with the experimental value.

PACS. 13.75.Lb Meson-meson interactions – 14.40.-n Mesons – 13.25.-k Hadronic decays of mesons –
12.38.Lg Nonperturbative methods

1 Introduction

The ρππ (K∗Kπ) coupling gρππ (gK∗Kπ) plays a very
important role in the phenomenological models for the
nuclear force and nuclear matter. Now it is widely be-
lieved that QCD is the underlying theory of the strong in-
teraction. Yet the complicated infrared behavior of QCD
causes the first principle derivation of hadron properties
highly nontrivial. So a quantitative calculation of the gρππ
(gK∗Kπ) coupling with a tractable and reliable theoretical
approach proves valuable.

The method of QCD sum rules (QSR), as proposed
originally by Shifman, Vainshtein, and Zakharov [1] and
adopted, or extended, by many others [2–4], are very use-
ful in extracting the low-lying hadron masses and cou-
plings. In the QCD sum rule approach the nonperturba-
tive QCD effects are partly taken into account through
various condensates in the nontrivial QCD vacuum. In this
work we shall use the light cone QCD sum rules (LCQSR)
to calculate the K∗Kπ and ρππ couplings.

The LCQSR is based on the OPE on the light cone,
which is the expansion over the twists of the operators.
The main contribution comes from the lowest twist opera-
tor. Matrix elements of nonlocal operators sandwiched be-
tween a hadronic state and the vacuum defines the hadron
wave functions. When the LCQSR is used to calculate the
coupling constant, the double Borel transformation is al-
ways invoked so that the excited states and the continuum
contribution can be treated quite nicely. Moreover, the fi-
nal sum rule depends only on the value of the hadron
wave function at a specific point, which is much better
known than the whole wave function [5]. In the present
case our sum rules invole with the pion wave function
(PWF) ϕπ(u0 = 1

2 ). Note this parameter is universal in
all processes at a given scale. In this respect, ϕπ(u0 = 1

2 )
is a fundamental quantity like the quark condensate. In [6]

the value is estimated as ϕπ(u0 = 1
2 ) = 1.2±0.3 using the

pion nucleon coupling constant and the phenomenological
ρωπ coupling constant as inputs. Recently the light cone
sum rule for gπNN (q2 = 0) [6] was reanalyzed [7]. The
contribution from the gluon condensate 〈g2

sG
2〉 and the

quark gluon mixed condensate 〈gcq̄σ · Gq〉 is added. The
uncertainty due to λN is reduced in the numerical analysis
with the help of the Ioffe’s mass sum rule. A new value
ϕπ(1/2) = 1.5 ± 0.2 [7] is obtained using the experimen-
tally precisely known gπNN [8].

The LCQSR has been widely used to derive the cou-
plings of pions with heavy mesons in full QCD [5], in the
limit of mQ → ∞ [9] and 1/mQ correction [10], the cou-
plings of pions with heavy baryons [11], the ρ-decay widths
of excited heavy mesons [12] and various semileptonic de-
cays of heavy mesons [13] etc.

Our paper is organized as follows: Section 1 is an in-
troduction. We introduce the two point function for the
K∗Kπ vertex in Sect. 2. The definitions of the PWFs are
presented in Sect. 3. In the following section we present
the LCQSR for the K∗Kπ and ρππ couplings. A short
summary is given in the last section.

2 Two point correlation function for the
K∗Kπ coupling

The dominant decay mode is K∗ → Kπ for K∗ and ρ →
ππ for ρ. The relevant decay amplitudes are

〈K∗0(p)π−(q)|K−(p+ q)〉 = −gK∗Kπqµεµ (1)

〈K∗−(p)π0(q)|K−(p+ q)〉 = −gK∗Kπ√
2

qµε
µ (2)

〈ρ−(p)π0(q)|π−(p+ q)〉 = −gρππqµεµ (3)
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where εµ is the polarization vector of the vector meson.
The resulting decay width reads

Γ (K∗ → Kπ) =
(gK∗Kπ)2|qπ|3

16πm2
K∗

(4)

Γ (ρ→ ππ) =
(gρππ)2|qπ|3

24πm2
ρ

(5)

With Γ (K∗ → Kπ) = 50.8MeV and Γ (ρ → ππ) =
154MeV [14] one gets gK∗Kπ = 9.08 and gρππ = 12.16.

To study these couplings, we start with the two-point
correlation function:

Π(p) = i

∫
d4xeipx

×〈π−(q)|T [d̄(x)γµs(x), s̄(0)γαγ5u(0)]|0〉. (6)

The instanton contributions may invalidate the usual sum
rule techniques for the pseudo-scalar current [15]. We use
the pseudo-vector currents for K and π throughout this
work.

At the phenomenological level the (6) can be expressed
as:

Π(p1, p2, q) = gK∗Kπ
fK∗mK∗

(p2 −m2
K∗)

fKqβp
α
2

(p2
2 −m2

K)

×
(
gµβ − pµpβ

m2
K∗

)
+ · · · (7)

with p1 = p, p2 = p+q. The ellipse denotes the continuum
and the off-diagonal transition contribution. The decay
constants fK and fK∗ are introduced as:

〈K(p)|s̄(0)γµγ5u(0)|0〉 = fKpµ , (8)

〈K∗|d̄(0)γµs(0)|0〉 = mK∗fK∗εµ , (9)

where εµ is the polarization vector of the K∗ meson,
After discarding the single pole terms in (7) which will

always be eliminated through double Borel transformation
later, the polarization operator can be expressed as

Π(p1, p2, q) = gK∗Kπ
fK∗mK∗

(p2 −m2
K∗)

fKp
α
2

(p2
2 −m2

K)

×
[
qµ +

1
2

(1− m2
K

m2
K∗

)pµ
]
. (10)

In the following we shall focus on the tensor structure
pαqµ.

3 The formalism of LCQSR and pion wave
functions

Neglecting the four particle component of the pion wave
function, the expression for Π(p1, p2, q) with the tensor
structure at the quark level reads,

Π(p1, p2, q) = −i
∫
d4xeipx (11)

× Tr{〈π−(q)|u(0)d̄(x)|0〉γµiSs(x)γαγ5}.

where iSs(x) is the full strange quark propagator with
both perturbative term and contribution from vacuum
fields.

iSs(x) = 〈0|T [s(x), s̄(0)]|0〉 = −i
∫

d4k

(2π)4
e−ikx

k̂ +ms

(m2
s − k2)

− igs

∫
d4k

(2π)4
e−ikx

∫ 1

0

dv[
1
2

k̂ +ms

(m2
s − k2)2

Gµν(vx)σµν

+
1

m2
s − k2

vxµG
µν(vx)γν ]

− 〈s̄s〉
12
− x2

192
〈s̄gsσ ·Gs〉+ · · · . (12)

where we have introduced k̂ ≡ kµγµ, ms = 150MeV is the
strange quark mass, Dµ = ∂µ − igsAµ.

By the operator expansion on the light-cone the matrix
element of the nonlocal operators between the vacuum and
pion state defines the two particle pion wave function. Up
to twist four the Dirac components of this wave function
can be written as [5]:

〈π(q)|d̄(x)γµγ5u(0)|0〉 = −ifπqµ
∫ 1

0

du eiuqx

× (ϕπ(u) + x2g1(u) +O(x4))

+ fπ
(
xµ −

x2qµ
qx

) ∫ 1

0

du eiuqxg2(u) , (13)

〈π(q)|d̄(x)iγ5u(0)|0〉 =
fπm

2
π

mu +md

∫ 1

0

du eiuqxϕP (u), (14)

〈π(q)|d̄(x)σµνγ5u(0)|0〉 = i(qµxν − qνxµ)

× fπm
2
π

6(mu +md)

∫ 1

0

du eiuqxϕσ(u). (15)

〈π(q)|d̄(x)σαβγ5gsGµν(ux)u(0)|0〉 =
if3π[(qµqαgνβ − qνqαgµβ)− (qµqβgνα − qνqβgµα)]

×
∫
Dαi ϕ3π(αi)eiqx(α1+vα3), (16)

〈π(q)|d̄(x)γµγ5gsGαβ(vx)u(0)|0〉 =

fπ

[
qβ

(
gαµ −

xαqµ
q · x

)
− qα

(
gβµ −

xβqµ
q · x

)]
×
∫
Dαiϕ⊥(αi)eiqx(α1+vα3)

+ fπ
qµ
q · x (qαxβ − qβxα)

×
∫
Dαiϕ‖(αi)eiqx(α1+vα3) (17)
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and

〈π(q)|d̄(x)γµgsG̃αβ(vx)u(0)|0〉 =

ifπ

[
qβ

(
gαµ −

xαqµ
q · x

)
− qα

(
gβµ −

xβqµ
q · x

)]
×
∫
Dαiϕ̃⊥(αi)eiqx(α1+vα3)

+ ifπ
qµ
q · x (qαxβ − qβxα)

×
∫
Dαiϕ̃‖(αi)eiqx(α1+vα3). (18)

The operator G̃αβ is the dual of Gαβ : G̃αβ = 1
2εαβδρG

δρ;
Dαi is defined as Dαi = dα1dα2dα3δ(1 − α1 − α2 − α3).
Due to the choice of the gauge xµAµ(x) = 0, the path-
ordered gauge factor P exp

(
igs
∫ 1

0
duxµAµ(ux)

)
has been

omitted. The coefficient in front of the r.h.s. of (14), (15)
can be written in terms of the light quark condensate 〈ūu〉
using the PCAC relation: µπ =

m2
π

mu +md
= − 2

f2
π

〈ūu〉.
The PWF ϕπ(u) is associated with the leading twist

two operator, g1(u) and g2(u) correspond to twist four
operators, and ϕP (u) and ϕσ(u) to twist three ones. The
function ϕ3π is of twist three, while all the PWFs appear-
ing in (17), (18) are of twist four. The PWFs ϕ(xi, µ) (µ
is the renormalization point) describe the distribution in
longitudinal momenta inside the pion, the parameters xi
(
∑
i xi = 1) representing the fractions of the longitudinal

momentum carried by the quark, the antiquark and gluon.
The wave function normalizations immediately fol-

low from the definitions (13)-(18):
∫ 1

0
du ϕπ(u) =∫ 1

0
du ϕσ(u) = 1,

∫ 1

0
du g1(u) = δ2/12,

∫
Dαiϕ⊥(αi) =∫

Dαiϕ‖(αi) = 0,
∫
Dαiϕ̃⊥(αi) = −

∫
Dαiϕ̃‖(αi) = δ2/3,

with the parameter δ defined by the matrix element:
〈π(q)|d̄gsG̃αµγαu|0〉 = iδ2fπqµ.

4 The LCQSR for the K∗Kπ coupling

Expressing (11) with the strange quark propagator and
keeping only the tensor structure pαqµ, we arrive at:

Π(p1, p2, q) = −ifπ
∫ 1

0

du

m2
s − (p+ uq)2

{ϕπ(u)

+
ms
3 µπϕσ(u) + 4ug2(u)− 4g1(u)− 4G2(u)

m2
s − (p+ uq)2

− 8m2
s[g1(u) +G2(u)]

[m2
s − (p+ uq)2]2

+ · · ·} , (19)

where µπ = 1.65GeV, fπ = 132MeV, G2(u) =
−
∫ u

0
g2(u)du, which arises from integration by parts to

absorb the factor 1/(q · x),∫ 1

0

e−iuq·x

q · x g2(u)du = −i
∫ 1

0

e−iuq·xG2(u)du

−G2(u)e−iuq·x|10 ,

Note the second term in (20) vanishes due to G2(u0) = 0
at end points u0 = 0, 1.

Making double Borel transformation with the variables
p2

1 and p2
2 the single-pole terms in (7) are eliminated. The

formula reads:

B1
M2

1
p2

1
B2

M2
2

p2
2

Γ (n)
[m2 − (1− u)p2

1 − up2
2]n

=

(M2)2−ne−
m2

M2 δ(u− u0) . (20)

Subtracting the continuum contribution which is mod-
eled by the dispersion integral in the region s1, s2 ≥ s0,
we arrive at:

fKfK∗mK∗gK∗Kπe
−
m2
K

+m2
K∗

2M2 = fπe
−u0(1−u0)q2+m2

s
M2

×{M2(1− e−
s1
M2 )ϕπ(u0) +

ms

3
µπϕσ(u0)

+ 4u0g2(u0)− 4g1(u0)− 4G2(u0)

− 4m2
s

M2
[g1(u0) +G2(u0)]}, (21)

where s1 is the continuum threshold, u0 = M2
1

M2
1 +M2

2
,

M2 ≡ M2
1M

2
2

M2
1 +M2

2
, M2

1 , M2
2 are the Borel parameters. Note

all the PWFs involved with the vacuum gluon field do
not contribute to the tensor structure pαqβ , which greatly
simplifies the analysis of the sum rule.

Similarly we can obtain the LCQSR for ρππ coupling.
In our calculation we take the up and down quark current
mass to be zero. Then we arrive at the simple sum rule:

fρmρgρππe
−
m2
π+m2

ρ

2M2 =
√

2e−
u0(1−u0)q2+m2

s
M2

×{M2(1− e−
s2
M2 )ϕπ(u0) (22)

+ 4u0g2(u0)− 4g1(u0)− 4G2(u0)}.

The sum rule (21) and (22) appears asymmetric with
the different masses for K and K∗ mesons at first sight.
However, if a sum rule holds well, there should exist a
certain interval called the working region of the Borel pa-
rameter, M2

i < M2 < M2
f . Within this region the sum

rule is insensitive to M2
B and stays reasonably stable with

the variation of MB . In other words, every point of MB in
the above interval is equally good for the analysis of the
sum rule. So long as the working regions for M2

1 and M2
2

have some overlapping region, which does occur in our
case, we can choose a common value in the overlapping
region for both M2

1 and M2
2 . From the above argument

we know such a choice will not alter significantly the final
result of the sum rule, i.e., the choice M2

1 = M2
2 is allowed

in the analysis of the LCQSR. Moreover, the symmetric
choice of M2

1 = M2
2 will enable the clean subtraction of the

continuum contribution, which is crucial for the numeri-
cal analysis of the sum rules. In contrast, the asymmetric
choice will lead to the continuum subtraction extremely
difficult in [5], which is the operational and technical mo-
tivation for the choice of u0 = 1/2. We shall work in the
physical limit q2 = m2

π → 0 in (21).
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Fig. 1. The sum rule for gρππ as a functions of
the Borel parameter M . From bottom to top the
curves correspond to s2 = 1.1, 1.2, 1.3GeV2
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Fig. 2. The sum rule for gK∗Kπ as a functions of
the Borel parameter M . From bottom to top the
curves correspond to s1 = 1.4, 1.5, 1.6GeV2

The resulting sum rule depends on the PWFs and the
integrals of them at the point u0 = 1

2 . We adopt ϕπ(u0) =
1.5± 0.2 [7]. For the other PWFs we use the results given
in [5], ϕσ(u0) = 1.47, g1(u0) = 0.022GeV2, g2(u0) = 0 and
G2(u0) = 0.02GeV2 at u0 = 1

2 at the scale µ = 1GeV.
The overlap amplitudes fK∗ and fρ can be determined

in a self-consistent manner making use of the correspond-
ing mass sum rules. For example, for the ρ meson [1,2],
we have:

m2
ρf

2
ρ =

1
π2
e

m2
ρ

M2
B

{
1
4

(
1 +

αs
π

)
M4
BE1

− b

48
+
αs
π

14
81
a2
q

1
M2
B

}
, (23)

where E1 ≡ 1 − (1 + s0
M2
B

)e
− s0
M2
B (with the continuum

threshold s0 = 1.5GeV2) is the factor used to subtract

the continuum contribution. Numerically, fρ = (0.18 ±
0.02)GeV, fK∗ = (0.21±0.02)GeV, fK = (0.15±0.02)GeV
[1,2,14,16].

Note that we have used the pseudo-vector interpo-
lating current, which couples strongly to both pseudo-
scalar mesons π, K and pseudo-vector mesons a1(1260),
K1(1270). a1(1260) is a broad resonance with a full width
of ∼ 200MeV. In order to eliminate the contamination
from a1(1260) and K1(1270), we choose the continuum
threshold parameter to be s2 ≤ (ma1 −

Γa1
2 )2 ∼ (1.2 ±

0.1)GeV2 and s1 ≤ (mK1−
ΓK1

2 )2∼(1.5±0.1)GeV2. These
values are consistent with the continuum threshold for the
sum rules of pseudo-scalar mesons. But they are slightly
smaller than the continuum threshold for vector mesons.

The final sum rules are stable with reasonable variation
of the Borel mass around m2

K∗ and m2
ρ respectively after

the exponential factor is moved to the left hand side as
can be seen from Fig. 1 and Fig. 2. The terms with the
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strange quark mass ms contribute about 10% to the whole
sum rule (21). Our final result is gK∗Kπ = (8.7± 0.5) and
gρππ = (11.5± 0.8) with the central values of fρ, fK , fK∗ ,
which agrees very well with the value extracted from the
experimental data gK∗Kπ = 9.08 and gρππ = 12.16 [14].

Although the coupling of K∗ρK may be sizeable, the
ρK intermediate states contribute to the continuum only
because mρ + mK = 1.27GeV〉√s1. In our approach we
have invoked quark-hadron duality and modeled the spec-
tral density with s〉s1 at the hadronic side with the free
parton-like one. So the ρK contribution is subtracted
away. On the other hand, the intermediate state 3πK
does lie around mK∗ and below the continuum thresh-
old
√
s1. But due to the strong suppression from the four-

body phase space integral, its contribution is negligible. In
other words, the K∗ pole term dominates the possible in-
termediate states with same quantum numbers below the
continuum threshold s1 while those intermediate states
above s1 is subtracted away using the quark-hadron dual-
ity assumption, which is the corner stone of the QCD sum
rules approach.

In summary we have calculated K∗Kπ and ρππ cou-
plings using the light cone QCD sum rules. These cou-
plings are related to the values of PWFs at the point
u0 = 1

2 , which are universal in all processes. Our results
are in good agreement with the experimental data.

This work was supported by the National Natural Science
Foundation of China and the Postdoctoral Science Foundation
of China.
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